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Numerical Solution of Lundquist Equations of 
Magnetohydrodynamics* 

By R. L. Johnston and S. K. Pal 

Abstract. A method of bicharacteristics [3] is used to derive a numerical method for 
solving multidimensional nonlinear Lundquist equations of magnetohydrodynamics. 
Actual numerical computations are carried out to solve two specific problems of mag- 
netohydrodynamics-the magnetohydrodynamic initial-pressure problem and a problem 
of cylindrical waves in a transverse magnetic field due to a thin current-carrying wire 
perpendicular to the plane of the fluid. 

1. Introduction. In this paper, we derive a method for the numerical solution 
of Lundquist equations which describe the flow of an electrically conducting fluid 
in the presence of an electromagnetic field. The method is derived from a method 
of bicharacteristics. In deriving the method, we have used the most general three- 
dimensional situation without linearization. The method is then used to solve two 
specific problems in magnetohydrodynamics-the magnetohydrodynamic initial- 
pressure problem and the problem of cylindrical waves in a transverse magnetic 
field due to a thin current-carrying wire perpendicular to the plane of the fluid. 
The exact solution of the initial-pressure problem in the presence of a uniform 
magnetic field was obtained by Friedlander [1] from the linearized version of the 
Lundquist equations. We compute solutions for both nonlinear and linearized 
equations. 

2. The Lundquist Equations [2]. The equations of motion of magnetohydro- 
dynamics consist of two groups. First, there are the equations of motion of an inviscid, 
electrically conducting fluid, 

pa9 V/at + (V grad)V} + gradp - Iuj X H = 0, 

a p/at + ( Vi grad)p + p div V = 0, 

where p is the pressure, p the density, V the velocity, j the current, H the magnetic 
field and ,u the permeability. Secondly, one has Maxwell's equations 

curl H = 4irj, curl E = -kt aH/at, 

Received October 2, 1972. 
AMS (MOS) subject classifications (1970). Primary 65M25, 65M05; Secondary 65MI0. 
Key words and phrases. Bicharacteristic, finite difference, hyperbolic system, magnetohydro- 

dynamics, Lundquist equations. 
* This research was supported by the National Research Council of Canada under grants A5262 

and A8323. 

Copyright ( 1974, American Mathematical Society 

33 



34 R. L. JOHNSTON AND S. K. PAL 

where E is the field strength and the displacement current has been neglected. Further- 
more, assuming that the fluid is a perfect conductor, 

E + u V X H = 0. 

Eliminating E, one obtains 

curl H = 47rj, OH/Ot curl( V X H). 

These equations must, as usual, be supplemented by div H = 0. 
Finally, there is the energy equation. Since we have already neglected viscosity 

and taken the electrical conductivity to be infinite, we must, for the sake of consistency, 
also ignore heat conduction. Then the entropy of any fluid particle remains constant 
and this implies that 

ap/at + (Vgrad)p = C2{Op/Ot + (Vagrad)pl, 

where C2 = (Op/Op)I/2, evaluated for constant specific entropy, is the local velocity 
of sound. In this case, the pressure-density relation is 

p = A pt, A = constant. 

Thus the equations for p, V and H are 

(2.1) U, + A1 U. + A2Uv + A3U. = 0 

where 

(2.2) U= [p, VZ, VV, V2, Hz, H ., H,]T, 

Vx C2p 0 0 0 0 0 

i/p Vz 0 0 0 KHv KH, 

O 0 VX 0 0 -KH,? 0 

(2.3) Al= 0 0 0 Vz 0 0 .KH., 

O 0 0 0 Vx 0 0 

o Hy -Hz 0 0 VX 0 

O H, 0 -HX 0 0 Vz 

VV 0 C2p 0 0 0 0 

0 VV 0 0 -KHY 0 0 

i/p 0 VY 0 KH, 0 KHz 

(2.4) A2= 0 0 0 V, 0 0 -KH , 

0 -lHV Hz 0 V, 0 0 

0 0 0 0 0 V, 0 

0 0 Hz -HV 0 0 Vv 
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Vz 0 0 C2p 0 0 0 

O Vz 0 0 -KH, 0 0 

O 0 Vz 0 0 -KH, 0 

(2.5) A3= i/p 0 0 Vz KHz KHv 0 

O -Hz 0 H. V5 0 0 

O O -Hz Hy 0 V. 0 

o 0 0 0 0 0 V.- 

where K = u/47rp. 

3. The Method. The method used for the Lundquist equations is the method 
of bicharacteristics developed by Johnston and Pal [3] for a hyperbolic system of 
partial differential equations. We are given a hyperbolic system 

m 

(3.1) Ut + Z AiUZ, = O 

where U = [u1, u2, * , uj] and Ai's are N X N matrices. The bicharacteristics 
[2] of the system are given by 

(3.2) dxi/dt = Ohi/OX1, 1 _ j_ N, 1 < i < m, 

(3.3) dX1/dt = -Oh,/Ox,, 1 < j_ N, 1 ? i ? m, 

where -hih 1 < j < N, are the N real zeros of the characteristic polynomial 

(3.4) H = det(XI + 
mAi; 

for a given set (X1, X2, *. Xm) of real numbers. Selecting a bicharacteristic and 
integrating along it, the system of given differential equations can be written as the 
following equivalent system: 

mt+At 

(3.5) U(t + At, t) = U(t, a) + E f Di Uz, dt 

whereD, = -Ai + (ah/aXA)I, h being an eigenvalue of the matrix E AiXi and 
a = (a,, a2, * am) is given by 

(3.6) ai = i- f dt, 1 i < m. 

Approximating the integrals using if +"t f(x, s) ds f(x, t)At and the derivatives 
U. by 

(3.7) Uz,,(t, t) (1/2Axi)[E+i - Ej] U(t, ), 

we get an explicit method 
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(3.8) = - jdxUl ri)4 Un(t) + I m ri(-A, + 4h I) E U"() 

+ E s ri(ri + E- - I)AEij UEU). 

Using the approximation 
rt+At 

J f(x, s) ds '[f(x, t) + f(x, t + At)] At 

for the integrals and the same approximations as in (3.7) for the derivatives U., 
we have an implicit method 

(nl~ 
M 

ahi r) U n(t) + 
M 

|a) |h s~ Un(t) 

(3.9) + 1 ( Aj + I-j I' r.[E+i - E_j] Un() 
4 i (X ) i[ 

+ ( :- A + 2 I'ri [E. i- E~]U~j () 
i =1 axi iQ 

Here ri = At/lAx, Q is the point (nAt, a) and 

E?if(t, x) = f(t, x1, X2, * * X2, X;i Ax, * * Xm) 

and EA, is understood to mean E+i when (ah/aXj)Q _ 0 and E_- when (ah/aX,)Q > 0. 
It is natural to ask if the choice of different bicharacteristics makes any significant 

difference in the solution obtained. The question is answered in [3] where it is shown 
that the discrepancy in the solutions obtained by using two different bicharacteristics 
is at most of the same order as the truncation error which is O(At2). 

In [3] it is also shown that the methods are stable provided that Xi's are chosen 
such that lah/aXIl < maxjIIAjII2 < R and ri = At/lAx < QmR2 1 < m, 
where Q = minjIah/aXiI. The eigenvalues of A1Xj + A2X2 + A3X3 for the Lundquist 
equations are 

(1) V.X1 + VVX2 + VgX3. 
(2) & (3) VX1 + VVX2 + V;X3 ?E Cf X, 

C= [(C2 + b2) + { (c2 + b2)2 - 4C2b2 }1/2]. 

(4) & (5) V.X1 + Vy X2 + Vz X3 ? cC* X, 

C = [(C2 + b2) - {(c2 + b2)2 - 4C2b2 }1/2J 

(6) & (7) V.X1 + VvX2 + VX3 ? bnX, where 

x2 = x + x2 + x2, 
2 3 

b2 = ( 2/41rp)(H2 + H2 + H2), b = (,/47rp)1/2(H.Xl + HX2 + HX3)/X, 

H. = (HZXl + HyX2 + HzX3)/X, H2 = H2 + Hy: + HZ. 

Here the bicharacteristics corresponding to the eigenvalue h = Vx X1 + Vv X2 + 

V, X3 + Cf X are determined by 
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dx oh Z + b2s(Hn/H2) (Hz - H 1/X) 
dt aX, Cf11C C 

dy _ah = + c A b s(HC/H2) (Hy - H.X2/X) , 
dt ax2 Cf 

dz a h 
Vz + CfX3/X 

b2(H 
2 

(H, - HnX3/X) , 

where 

s = c 2/b 2, C = [(1 + s)2 - 4sb2/b 2]12. 

Similarly, bicharacteristics corresponding to the other eigenvalues can be obtained. 
Numerical solution can now be obtained by using these values of Oh/,OX1, Oh/ahX2, 
ah/la3 in either (3.8) or (3.9). 

Here, it should be noted that in the derivation of the method no assumption 
was made about the strictly hyperbolic nature of the equations. Thus even if, in a 

given case, certain bicharacteristic rays are taken more than once, the method should 
be successful as is proved by the computational results obtained in the next section 
in the two degenerate cases where (1) c82 = 0 and the wave-speed locus has a double 
point and (2) cf = b, -b, c. = b, -b. 

4. The Numerical Solutions. 
(a) The Magnetohydrodynamic Initial-Pressure Problem. This problem, as men- 

tioned before, was considered by Friedlander [1]. It is a problem in three space 
dimensions and concerns the propagation of small disturbances in a compressible 
fluid which is also a conductor of electricity in the presence of a magnetic field. 

Energy dissipation by viscosity, heat conduction and the Joule heat is neglected 
as is the displacement current. The equations governing the phenomenon are the 

Lundquist equations (2.1). We now consider departures from an equilibrium in 

which the medium is uniform. Let po, pI and H, be the constant equilibrium values 

of the pressure, density and the magnetic field respectively and put p = po + p', 

p = Po + p', H = Ho + H', where p', p' and H' are departures from the respective 

equilibrium values. Then the equations for p', V, H' are 

(4.1) Ut + AlU. + A2Uy + A3U. = 0 

where 

(4.2) U = [p', V., Vy, V., H., H', H']T, 

and A1, A2, A3 are as defined in (2.3), (2.4) and (2.5). Assuming small departures, 

and by choosing the direction of Ho as the x-axis, we can obtain an approximation 
to the system by the following linear system 

(4.3) )at 
+ C2 

Po( ax + cyy + aZ) ?0 

(4.4) =+ 0 O a)t PO aX 
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a Vu + opt ap K H ." y ax H] (4.5) o + =0 + KoHo _= 
Ot Po OY L9 ox 

o v loap' [H., OH1 (4.6) Oz + Ho 0, Ot p Oz L ox 

(4.7) + Ho + = 0, 

OH' aov (4.8) - Ho d = 0' 
Ot ox 

(4.9) 
a 

-. Ho a-- 
V. 0 

Ot Ox 

where p' = c2p', c being now the velocity of sound calculated with the equilibrium 
po and po and Ko = Mi/47rpo. These equations, of course, follow directly from the 

TABLE 1 

Solution of Initial-Pressure Problem at x = y = z = .4. 1 and 11 denote the exact and numerical 
solutions, respectively, of the linearized problem while 111 denotes the numerical solution of the 

nonlinear equations. 

No. of 
time-steps Solution p' V. VY = V. Hz' Hv' = Hz' 

20 1 0.5936 0.2052 0.1326 -0.2229 0.1576 
11 0.5912 0.2042 0.1326 -0.2167 0.1549 
111 0.5668 0.1848 0.1246 -0.1929 0.1538 

50 1 -0.0383 0.3274 0.0832 -0.8583 0.6069 
11 -0.0397 0.3257 0.0834 -0.8535 0.6044 
111 -0.0425 0.3131 0.0852 -0.8197 0.5873 

100 1 -0.1674 0.1534 -0.2860 0.1613 -0.1141 
11 -0.1668 0.1519 -0.2855 0.1600 -0.1135 
111 -0.1728 0.1534 -0.2915 0.1651 -0.1128 

TABLE 2 

Solution of Initial-Pressure Problem at x = y = z = .4. This is the degenerate case when c.2 = 0 
1 and 11 denote the exact and numerical solutions, respectively, of the linearized problem 

while 111 denotes the numerical solutions of the nonlinear equation. 

No. of 
time-steps Solution Pt V. V = V. Hz' Hy' = Hz' 

20 1 0.6501 0.0 0.1595 -0.4852 0.0 
11 0.6462 -0.0003 0.1594 -0.4735 0.0 
111 0.6170 -0.0020 0.1493 -0.4374 0.0052 

50 1 0.0828 0.0 0.1141 -1.9036 0.0 
11 0.0791 -0.0003 0.1141 -1.8904 0.0 
111 0.0684 -0.0016 0.1236 - 1.8080 -0.0025 

100 1 0.5384 0.0 -0.1823 -0.7646 0.0 
11 0.5344 -0.0003 -0.1821 -0.7524 -0.0002 
111 0.5693 0.0019 -0.1884 -0.8338 0.0029 
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TABLE 3 

Solution of Initial-Pressure Problem at x = y = z = .4. This is the degenerate case when cf = b, 
- b and c8 = b, - b. 1 and 11 denote the exact and numerical solutions, respectively, 

of the linearized problem while 111 denotes the numerical solutions of the 
nonlinear equations. 

No. of 
time-steps Solution p' V. V = V. Hz' IH' = Hz' 

20 1 0.7002 0.1789 0.0 0.0 0.0 
11 0.6991 0.1783 0.0 0.0 0.0 
111 0.6616 0.1591 -0.0008 0.0383 -0.0011 

50 1 -0.1802 0.2700 0.0 0.0 0.0 
11 -0.1799 0.2694 0.0 0.0 -0.0001 
111 -0.1679 0.2478 0.0008 0.0029 -0.0018 

100 1 -0.8505 -0.1057 0.0 0.0 0.0 
11 -0.8491 -0.1053 0.0 0.0002 0.0 
111 -0.8808 -0.1290 -0.0018 0.0299 0.0002 

nonlinear system by noting that Hz = Ho + Hz', H, = Hy', H. = H.', p = Po + P" 
p = po + p' and putting the primed quantities and V., V,, V, in the matrices A1, 
A2, A3 equal to zero. 

In the numerical computation, the following initial conditions and values were 
used: 

'.5 

t - 0.5 

0.5 

0 

1 2 3 4 5 6 

r 1 

FIGURE 1. Distribution of density in space at different times. 
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FIGURE 2. Distribution of velocity in space at different times. 

p'(O,x,y,z) = cos(xcos O +ysin 0 cos 4 +zsin 0 sin0), 

V(O, x, y, z) = H'(O, x, y, z) = 0, 

with the following values for the different parameters of the problem: Ho = 5, ,u = 1, 
po = 1, 0 = = ir/4,p = pz with y = 2. 

Computation was done for the region O _ x _ 1, 0 < y _ 1, 0 < z < 1. Boundary 
values were calculated by modifying the difference scheme as outlined in [5]. Mesh 
widths chosen are: Ax = Ay = Az = .1, At/Ax = .25. The exact solution (1) and 
the numerical solution (11) for the linearized problem as well as the numerical solution 
(111) of the exact nonlinear equations are given in Table 1 for the point x = y = 
z = .4. The results for (11) are better than the ones reported in [4] because of finer 
meshes used here. 

If we take 0 = 7r/2, then c82 = 0 in this case [1] and we have a case where two 
bicharacteristic rays are taken more than once. The results for this case are given 
in Table 2. 

If c2 = b2 and 0 = 0, then we have c, = b, -b and c. = b, -b. For achieving 
such a case in this problem, we chose 

,u = 8rpo/H2 with p= p', y = 2. 
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FIGURE 3. Distribution of excess magnetic strength in space at different times (h = H - 1 /r). 

The results for this case are given in Table 3. 
(b) Cylindrical Waves in Magnetohydrodynamics. Assume an inviscid, conducting 

gas with a transverse magnetic field due to a thin current-carrying wire perpendicular 
to the plane of the fluid. In this problem, the velocity has only the radial component 
q while the magnetic field has only the transverse component H. Initially, the con- 
ducting fluid is assumed to be isothermal. The initial density distribution is assumed 
to be po = 1 + 2e-42 where r is the radial distance and the initial magnetic field 
is of the form 

= B/r, for r 0 0, 
Ho 

= 0, for r = 0, 

where B is a constant. Briefly, the problem resembles that of the flow which results 
when compressed mass of conducting gas under a magnetic field, initially at rest, 
is suddenly released. The situation simulates, in simplified fashion, the conditions 
of a stellar explosion. 

The equations governing the fluid are 
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FIGURE 4. Distribution of density at centre. 

0 q Lq JAH 2 
101)P 

AH OH 
a9t O cr +47rpr p cr 47r p O~r 

GI' + q-GI + pc-q + pq= 0, GIt ar Or r 

OH O HOq Hq 

?~~~~~~~G I .a . ~ r .s . 

t9 + q 
GI = 0. 

At the centre r = F0, we have, from considerations of symmetry, q e.0, Op/Or 0, 
Op/O~r = 0. Also H = 0 at r = 0. 

Numerical computations were performed with q = 1.4, B = 1, , Ar . 
At/Ar = .1 over 300 time intervals (t = 3). The results are shown in Figs. 1, 2, 3, 4. 
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FIGURE 5. Position of the wave-front at different times. 

Figure 5 gives the propagation of the wave front. The velocities of propagation of 
the wave front calculated from this curve at different times agree with the velocities 
calculated from the formula 

dr/dt - q = (C2 + H2/4)1/2 

where c is, as usual, the local speed of sound. 
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